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We present new, highly accurate, and efficient methods for computing the motion
of a large number of two-dimensional closed interfaces in a slow viscous flow. The
interfacial velocity is found through the solution to an integral equation whose ana-
lytic formulation is based on complex-variable theory for the biharmonic equation.
The numerical methods for solving the integral equations are spectrally accurate and
employ a fast multipole-based iterative solution procedure, which requires only O(N)

operations where N is the number of nodes in the discretization of the interface. The
interface is described spectrally, and we use evolution equations that preserve equal
arclength spacing of the marker points. We assume that the fluid on one side of the
interface is inviscid and we discuss two different physical phenomena: bubble dynam-
ics and interfacial motion driven by surface tension (viscous sintering). Applications
from buoyancy-driven bubble interactions, the motion of polydispersed bubbles in
an extensional flow, and the removal of void spaces through viscous sintering are
considered and we present large-scale, fully resolved simulations involving O(100)

closed interfaces. c© 2002 Elsevier Science (USA)

Key Words: Stokes flow; fluid interfaces; integral equations; fast-multipole meth-
ods; multiply-connected domains.

1. INTRODUCTION

The motion of deformable interfaces in a slow viscous flow is a fundamental problem
with relevance to a number of physical processes, including emulsion sedimentation and
rheology, drop coalescence and breakup, and the viscous sintering phenomenon. Given
the highly complicated nature of this type of problem, numerical simulation has become
one of the most important tools for investigation. However, even with increased speed
and memory, current computational architecture is still restricted, when not coupled with
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modern fast algorithms, in its ability to handle large-scale problems with a high degree of
accuracy.

In this paper, efficient methods are presented that can be used to accurately calculate
the deformation of a large number of closed interfaces using only modest computational
resources. These methods are an extension of those presented in [20] for investigating the
motion of a single, closed interface in a Stokes flow. Here, we consider the case in which the
fluid on one side of these interfaces is inviscid, and thus the interface boundaries represent
bubbles or gas pockets in the flow. There are three novel elements to these methods. First, the
governing fluid dynamics are described by an integral equation formulation which is solved
using spectrally accurate, fast methods. Second, evolution equations are used that preserve
equal arclength spacing of the marker points on the interface, thereby maintaining the mesh
dynamically and preserving a low-order stability constraint. Third, in order to maintain
a high degree of accuracy, the interface is described using a spectral mesh. We present
several simulations which track up 70,000 marker points representing O(100) bubbles or
gas pockets.

To find solutions to the Stokes equations, the integral equation methods developed for a
single closed interface in [20] are extended to those that are capable of handling multiply-
connected bounded, unbounded, or semi-infinite (wall-bounded) domains. The starting
point is the classical Sherman–Lauricella equation which has its analytic foundation in the
complex variable theory for the biharmonic equation. As seen in [10] for the case of solid
particles in a Stokes flow, a direct application of the integral equations for simply-connected
problems will become rank deficient in multiply-connected domains. Here, the resolution
of this rank deficiency is dependent on the nature of the problem under consideration
and we separate our discussion into two cases: bubble dynamics and viscous sintering. The
discretization of the integral equation is spectrally accurate and the fast multipole method [4,
8, 33] is used to compute the matrix–vector products in the iterative solution of the resulting
linear system. With N points in the discretization of the boundary, our method requires only
O(N ) operations, versus direct Gaussian elimination [38, 41] which are O(N 3). Standard
implementations of iterative schemes (c.f. [5, 29]) require O(N 2) operations, thus limiting
these studies to only modest-sized problems in the range of 20–40 drops or bubbles (an
insufficient number to determine statistical properties of evolving microstructure [5], for
example). Recently, Zinchenko and Davis [42] presented an economic multipole technique
for large-scale simulations of three-dimensional drops. Their algorithm is O(M2 P3/2),
where M is the number of drops, P is the number of points per drop, and the prefactor
on this operation count is small. For M = O(100) and P = O(1000), their method is quite
efficient. While the accuracy of their calculations appears to be adequate, they do rely on
artificial smoothing to supress numerical instabilities and to enable larger time steps to be
taken. Also, it would be difficult in their formulation to introduce local adaptive refinement,
if needed.

Here, the interface is described using a spectral mesh, with the number of points always
being large enough to guarantee full spatial precision. More typical descriptions, such
as cubic splines or polygonal approximations, can lead to underresolved features on the
interface (for example, curvature). We demonstrate that this can introduce significant error
during the course of a simulation. In addition, we follow the approach used in [20], which
is to dynamically maintain equal arclength spacing of marker points on the interface. Other
authors [14, 35, 43] have used this approach in various studies of interfacial motion, and
we showed in [20] that this equal arclength frame can eliminate both the stiffness that can
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arise when regions of high curvature develop (c.f. [38, 41]) and the need for prohibitively
small explicit time steps when grid points are allowed to cluster in an adaptive fashion.
Since the nature of the stability constraint is well understood in our simulations (it is
equivalent to a CFL-type condition), we can guarantee our time stepping methods to be fully
stable.

We consider only two-dimensional problems. While certain physical effects are lost in
this reduction of dimension, it has been noted by many authors (see the discussions in [5, 21]
for example) that two-dimensional bubbles and drops retain enough of the qualitative fea-
tures seen in three dimensions to maintain a high degree of physical relevance. We note
that the fast multipole method is available in three dimensions [11, 12], which could be
incorporated, in the future, into a primitive variable formulation for a three-dimensional
study of the problems presented here.

In the next section, the governing equations for fluid interfaces in a Stokes flow are
outlined. The discussion is separated into two problems: the first considers the motion of a
viscous fluid filled with gas pockets being driven solely by surface tension and the second
concerns the deformation of bubbles under the action of applied and hydrodynamic forces.
In Section 3, the relevant complex variable theory for the biharmonic equation is briefly
reviewed. This theory leads to the formulation of the integral equations in Section 4. In
Section 5, our numerical methods are presented and several examples are given in Section 6.

2. PROBLEM FORMULATION

We consider the motion of a collection of closed fluid interfaces suspended in a two-
dimensional slow viscous flow, with the fluid or gas contained within the interfaces being
inviscid. The viscous fluid domain, then, is multiply-connected and may be finite, infinite,
or semi-infinite (wall-bounded) in extent. The component boundaries are denoted by �1,
�2, . . . , �M , and in the case of a bounded fluid domain, the outer boundary is described by
�0 (see Fig. 1). We let � represent the union of all such component curves.

We present the governing equations in their nondimensional form by choosing the char-
acteristic length as the radius a of a typical bubble or void size, velocity as σ/µ, where
σ is the surface tension and µ is the kinematic viscosity (assumed to be constant), time
as aµ/σ , and pressure as σ/a. We assume that the Reynolds number is small, thus the
equations governing the fluid motion in D are the Stokes equations

∇2u = ∇ p, ∇ · u = 0, x ∈ D, (1)

where u = (u, v, 0) is the velocity and p is pressure. Gravity effects, if included, have been
absorbed into the pressure term through p = � − (ρga2/σ)ng · x, where ρ is the density
of the fluid, � is the dynamic pressure, and ng is the unit normal pointing in the direction
of gravity.

We now separate the discussion into two separate classes of problems, each representing
different phenomena of interface motion. The first considers the motion of a viscous fluid
filled with void spaces being driven solely by surface tension. This problem is entitled
viscous sintering. We call the second class bubble dynamics as it is concerned with the
deformation of bubbles under the action of applied and hydrodynamic forces.

Viscous Sintering. The motion of a viscous fluid driven solely by surface tension serves
as one mechanism for sintering: a process by which void spaces or gas pockets are removed
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FIG. 1. A collection of bubbles/gas pockets in a bounded viscous fluid domain D. The unit normal n points
out of D and θ is the tangent angle to �. The local curvature is given by κ = θs , where s is arclength increasing in
a clockwise direction on �1, . . . , �M , and counterclockwise on �0.

from a granular compact by heating. In this situation, the fluid domain is bounded and
contains void spaces described by the component curves �k , k > 0. Following the model as
outlined in [30, 31, 38–41], the appropriate interface condition is that the normal component
of stress is the product of surface tension and curvature. In nondimensional form, this is

�n = −κn, x ∈ �. (2)

(We assume a zero gas pressure inside of the void spaces [30, 31].) Here κ is the local
curvature (see Fig. 1 for orientation), n is the outward pointing normal, and � = − pI +
[∇u + (∇u)T ] is the stress tensor.

Bubble Dynamics. In this second class of problems, we consider the motion and defor-
mation of bubbles under the action of hydrodynamic forces and possibly gravity effects. In
this case, we assume the fluid domain is unbounded or wall-bounded and the component
curves �k represent the bubble boundaries. We assume also that the bubbles contain a perfect
gas, and that the bubble rise is small. Under these assumptions, the change in hydrostatic
pressure is small compared to the ambient fluid pressure and we can further assume that
the volume of each bubble remains constant [32]. In the case of a single bubble, the gas
pressure inside is set arbitrarily to zero. If there is more than one bubble, each has its own
value of internal gas pressure pk(t). The appropriate stress interface condition is

(� + pkI)n = −κn + Bng · x n, x ∈ �. (3)
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Here B is the bond number,

B= �ρga2

σ
,

where�ρ is the difference in density between the fluid and the gas in the bubble, respectively.
We complete the description of the problem with appropriate far-field conditions

u → u∞(x, t), p → p∞(t), as |x| → ∞, (4)

where u∞ is the velocity of the incident flow and p∞ is in reference to a zero gas pressure
inside one of the bubbles.

We now consider the motion of the interface. The kinematic condition states that material
points on the interface move with the velocity of the fluid. Thus, the Lagrangian description
is

dx
dt

= u(x), x ∈ �,

and many approaches to tracking interfaces are based on the time integration of the above
(c.f. [29, 38, 41], for example). However, for longtime simulations where the interface
changes shape significantly, the Lagrangian description may lead to either clustering of
marker points or inadequate resolution of the interface. Instead, we employ the observation
that the shape of the evolving interface is determined solely by the normal component of
the fluid velocity, U = u · n. Accordingly, a tangential component T can be added without
changing the shape of the evolving curve, which can then be used to dynamically control
the mesh. In [16], we investigated evolving

dx
dt

= Un + T s, x ∈ �, (5)

where T is chosen to dynamically maintain an equal arclength spacing of marker points.
This is called the equal arclength frame, and we saw in [16] that it eliminates the need
to postprocess points and prevents prohibitively small time steps that can be required by
explicit methods when points are allowed to cluster together.

The equal arclength frame is realized in the following manner. The interface �k is
parametrized by α ∈ [0, 2π ] so that x = x(α, t) describes the interface. (To simplify nota-
tion, the parameter α is assumed to take on the appropriate values according to the particular
�k under consideration.) Let s be arclength, 0 ≤ s ≤ Lk , where Lk is the total length of �k .
We require that sα = |xα| be everywhere equal to its mean,

sα = Lk/2π. (6)

As derived in [14, 16], the appropriate choice for T is

T (α, t) = T (0, t) −
∫ α

0
θα′Udα′ + α

2π

∫ 2π

0
θα′Udα′, (7)

where θ is the tangent angle to �. If the initial parametrization is such that (6) is satisfied,
then choosing T according to (7) maintains this constraint in time.
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3. THE BIHARMONIC EQUATION AND COMPLEX VARIABLE THEORY

For flow in two dimensions, the governing equations can be simplified by introducing
a stream function W (x, y), which satisfies the relations u = Wy , v = −Wx . The Stokes
equations are replaced by the biharmonic equation for W ,

�2W (x) = 0.

There is a powerful complex variable theory for the biharmonic equation that has been
exploited by a number of authors (c.f. [1, 3, 13, 36] for example) to derive analytical
solutions for a single interface in a creeping flow. This complex variable theory also provides
the analytical tools for deriving the integral equations that are the basis for our numerical
study. We summarize the relevant details of this theory here (c.f. [18] for derivations and
more details).

Following the discussion of Mikhlin and others [23–25], we note that any plane bihar-
monic function W (x, y) can be expressed by Goursat’s formula as

W (x, y) = Re(z̄φ(z) + χ(z)),

where φ and χ are analytic functions of the complex variable z = x + iy, and Re( f ) denotes
the real part of the complex-valued function f . The functions φ(z) and ψ(z) = χ ′(z) are
known as Goursat functions. All of the relevant physical variables can be expressed in terms
of these Goursat functions and they are listed here as

−v + iu = φ(z) + zφ′(z) + ψ(z)

ζ + i p = −4φ′(z),

where ζ = −∇2W is the vorticity. These expressions allow us to reduce the boundary-value
problems associated with interfaces in a Stokes flow to problems in analytic function theory,
namely that of finding φ and ψ which satisfy appropriate conditions on the boundary �.
We outline these conditions below.

For any point τ on a component boundary �k , the outward normal is given by n = −iτs .
An expression for the stress acting on the interface is (c.f. [16, 17] for more details)

�n ≡ −2
∂

∂s
(φ − τ φ̄′ − ψ̄). (8)

Substituting the above and κn = −τss into the interface condition (2) or the viscous sintering
problem and integrating with respect to s gives

φ − τ φ̄′ − ψ̄ = −1

2
τs + ak, τ ∈ �k . (9)

The constants of integration ak may be fixed arbitrarily on one boundary, say a0 = 0. How-
ever, in multiply-connected domains, they may differ on each contour and their values are
obtained as part of the solution process (c.f. [10, 23, 24]). Similarly, the stress condition (3)
for the bubble dynamics problem is equivalent to

φ − τ φ̄′ − ψ̄ + i

2
pkτ = −1

2
τs + i

B
4

∫ s

0
ng τ̄ τs + ngττs ds + ak, τ ∈ �k . (10)
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Integrating (8) with respect to s about �k gives the net force Fk , Specifically,

Fk = 2[φ − τ φ̄′ − ψ̄]�k , (11)

where [.]�k means the increment as the curve �k is traversed in the clockwise direction. We
see from the right-hand side of (9) that if the motion is driven by curvature alone, there can be
no net force acting on �k . However, if gravity is included, as is the case in (10), there is a con-
tribution that becomes an important part of the integral equation formulation in Section 4.2.
We isolate this value as

Fk = −i
B
2

∫ Lk

0
ng τ̄ τs + ngττs ds

= −i
B
2

∫ Lk

0
ng

[
1

2

∂

∂s
(x2 + y2) + i xys − iyxs

]
+ ng

2

∂τ 2

∂s
ds

= −Bng

∫ Lk

0
yxs ds

= −Bng Ak,

where Ak is the area bounded by �k .
If D is unbounded or semi-infinite in extent, the Goursat functions must also capture the

appropriate far-field behavior (4) (c.f. [36]),

φ ∼− i

4
p∞(t)z + φ∞(z) + G(t), ψ ∼ ψ∞(z) − G(t), as |z| → ∞, (12)

where p∞(t) is determined as part of the solution, G(t) is an arbitrary constant, and φ∞(z)
and ψ∞(z) are suitably chosen analytic functions so that

φ∞(z) + zφ′∞(z) + ψ∞(z) = −i(u∞ + iv∞).

4. THE SHERMAN–LAURICELLA INTEGRAL EQUATION

We now consider the extension of the integral equation methods developed in [16] for
a single, closed interface in a Stokes flow to multiply-connected domains. Unfortunately,
a direct application of the integral equations for simply-connected problems will become
rank deficient in multiply-connected domains. In [10], this rank deficiency was resolved for
Stokes flow with solid boundaries and for isotropic elasticity in the plane. For example, in
Stokes flow about particles with solid boundaries, fundamental singular solutions known as
Stokeslets and Rotlets are added to each component curve. As discussed in that work, this
process is akin to the completed double layer method used by many authors [19, 26–30]
to construct nonsingular systems for second-kind integral equations. Here, we construct
full-rank integral equations, however, the physical principles underlying viscous sinter-
ing and bubble dynamics require different resolutions. Thus, we consider these two cases
separately.

4.1. Viscous Sintering: Bounded Domain

We consider the construction of functions φ and ψ that are used to satisfy the boundary
condition (9). Recall that the sintering process acts to increase the cohesion of the domain D
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with time and thus we expect the void spaces to decrease in area. We model this process by
placing a source singularity in each component curve (this is the same approach discussed
in [23, 38–40]). The strength of this singularity is related to the rate of change of area (see
below). Motivated by the discussion in [16], the chosen representations for φ(z) and ψ(z)
are

φ(z) = 1

2π i

∫
�

ω(ξ, t)

ξ − z
dξ,

ψ(z) = 1

2π i

∫
�

−ω(ξ, t) dξ + ω(ξ, t) d ξ̄

ξ − z
− 1

2π i

∫
�

ξ̄ω(ξ, t)

(ξ − z)2
dξ +

M∑
k=1

bk(t)

z − zk
.

Here, ω(ξ, t) is an unknown complex density, and zk is an arbitrary fixed point inside the
region bounded by �k (zk moves as the void space moves so as to remain inside �k). The
time-dependent singularity strengths bk(t) are strictly imaginary and are defined by

bk =
∫

�k

ω(τ, t) d τ̄ − ω(τ, t) dτ, k = 1 · · · M.

They give the rate of change of area inside the component curves �k ,

d Ak

dt
= 2π ibk .

Substituting the representations into (9), letting z tend to a point τ on the contour � and
using the classical formulae for the limiting values of Cauchy-type integrals, we obtain the
Sherman–Lauricella integral equation,

ω(τ, t) + 1

2π i

∫
�

ω(ξ, t) d ln
ξ − τ

ξ̄ − τ̄
+ 1

2π i

∫
�

ω(ξ, t) d
ξ − τ

ξ̄ − τ̄
− i

B̄0

τ̄ − z̄∗

−
M∑

k=1

bk(t)

τ̄ − z̄k
− ak(t) = −1

2

∂τ

∂s
, τ ∈ �k (13)

where a0(t) = 0, and for k > 0, we define

ak = −
∫

�k

ω(ξ, t) ds.

Note that the left-hand side of the integral equation includes the term B̄0/(τ̄ − z̄∗), where
we let z∗ be an arbitrary point in the fluid domain D and

B0 = 1

2π

∫
�

[
ω(τ, t)

(τ − z∗)2
dτ − ω(τ, t)

(τ̄ − z̄∗)2
d τ̄

]
.

The integral equation (13) has been well studied in the context of elasticity in the plane, we
refer the readers [24, 25] for a proof of invertibility and that B0 = 0 if the boundary data
satisfy the compatibility condition

Im
∫

�

∂τ

∂s
dτ = 0,
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which is clearly the case. We will simply observe here that the equation is a Fredholm
equation of the second kind and, in the absence of the source terms, the integral equation
above is singular with rank deficiency M .

4.2. Bubble Dynamics: Unbounded and Semi-infinite Domains

We consider now the case in which �k are the boundaries of gas bubbles, moving and
deforming under the action of hydrodynamic and applied forces. There are three elements
distinct from the previous example of viscous sintering that impact the representations of the
Goursat functions. First, φ and ψ must capture the far-field behavior given by (12). Second,
the bubbles must conserve mass and thus cannot contain source terms. Finally, when gravity
effects are included, the Goursat functions must be multivalued according to (11). We must
also resolve the additional complication of Stokes paradox: if there is a net force acting on
the assemblage of bubbles, then the velocity at infinity grows logarithmically. As a result,
when gravity effects are included, we can only consider these flows in semi-infinite domains.
The necessary modifications are discussed at the end of this section.

Appropriate representations for the Goursat functions are

φ(z) = 1

2π i

∫
�

ω(ξ, t)

ξ − z
dξ − i

4
p∞(t)z + φ∞(z) + G(t) +

M∑
k=1

Ck log(z − zk),

ψ(z) = 1

2π i

∫
�

−ω(ξ, t) dξ + ω(ξ, t) d ξ̄

ξ − z
− 1

2π i

∫
�

ξ̄ω(ξ, t)

(ξ − z)2
dξ + ψ∞(z) − G(t)

+
M∑

k=1

{
Ck log(z − zk) − Ck

z̄k

z − zk

}
.

In the above, Stokeslet singularities of strength Ck are added to each component curve.
As discussed in detail in [17], their strength is related to the force acting on each bubble
through Fk = −8π iCk , thus

Ck = −i
Bng Ak

8π
. (14)

Again, substituting the above forms into (10) and letting z approach a boundary point τ ,
we obtain

ω(τ, t) + 1

2π i

∫
�

ω(ξ, t) d ln
ξ − τ

ξ̄ − τ̄
+ 1

2π i

∫
�

ω̄(ξ, t) d
ξ − τ

ξ̄ − τ̄
− i

2
(p∞ − pk)τ − ãk

= −1

2

∂τ

∂s
− φ∞(τ ) + τφ′∞(τ ) + ψ∞(τ ) + i

B
4

∫ α

0
ng τ̄ τα′ + ngττα′ dα′

−
M∑

k=1

{
2iCk arg(τ − zk) − Ck

τ − zk

τ̄ − zk

}
, (15)

where ãk(t) ≡ ak(t) − 2G(t) are given by

ãk = −
∫

�k

ω(ξ, t) ds.



10 M. C. A. KROPINSKI

We must also define representations for the pressure terms that will result in well-conditioned
integral equations. Following [16], the far-field pressure is defined by

p∞(t) = − 2

π
Re
∫

�1

ω(ξ, t)

(ξ − z1)2
dξ,

and the gas pressure in each bubble is

pk(t) = p∞(t) + 2

π
Re
∫

�k

ω(ξ, t)

(ξ − zk)2
dξ.

This gives a reference value of zero gas pressure inside �1.

Semi-Infinite Domains. In an unbounded domain, the leading term of the velocity in the
far field derived from the previous representations of the Goursat functions is

−v + iu ∼ 2

(
M∑

m=1

Cm

)
log |z|, as |z| → ∞.

Thus, if gravity effects are included and the values of Ck are given by (14), the velocity
grows logarithmically. This is a consequence of Stokes paradox, and we can eliminate this
difficulty by introducing an infinite wall into the fluid domain and assuming that the bubbles
are embedded in a half space S. (Alternatively, we could allow logarithmic behavior and
match our solution to an outer Oseen solution; c.f. [37]. We do not consider this case here.)
By convention, we assume that S is the the upper half plane so that the wall boundary �W

is given by y = 0, and on that wall boundary, the fluid velocity is zero. (Manga and Stone
implemented a similar fix in [21] by introducing a planar free-slip surface.) By changing
the direction of gravity, ng in (3), it is trivial to change the relative position of the solid
wall. The boundary condition on the wall is satisfied by using the method of images, and
formulae for the reflected sources are given in [17]. The reflected Stokeslets act to cancel
out the logarithmic growth of the velocity field, and we can then match to the appropriate
far-field velocity as given by (12).

4.3. Dynamics of the Interface

As discussed in Section 2, the shape of the evolving interface is determined solely by the
normal component of the fluid velocity U on �, where U = Re{(u + iv)n̄} and

u + iv = −i lim
z→τ

(φ + zφ̄′ + ψ̄), τ ∈ �

= − 1

2π

∮
�

ω(ξ, t)

{
dξ

ξ − τ
+ d ξ̄

ξ̄ − τ̄

}
+ 1

2π

∫
�

ω(ξ, t)d

(
ξ − τ

ξ̄ − τ̄

)
+ u∞ + iv∞ + (u + iv)s . (16)

In the above, ω(τ, t) is found from the solution to (13) or (15) and
∮

denotes a principal value
integral. It is understood that u∞ + iv∞ ≡ 0 for flows in bounded domains and (u + iv)s

takes on the value from the appropriate singular contributions: sources in the case of viscous
sintering and Stokeslets in the case of bubble dynamics. The work in [16] presents a thorough
analysis of the evolution equation for a single interface in a creeping flow. Specifically, we
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performed a small-scale decomposition of (5) to determine the most dominant term (the
leading-order term at small spatial scales). In the equal arclength frame this term is

dτ

dt
∼ −1

4

H[τα]

sα(t)
, τ ∈ �k,

where H[.] is the Hilbert transform. For explicit time stepping methods, this leads to a
low-order CFL-type stability constraint.

5. NUMERICAL METHODS

5.1. Spectral Description of the Interface and Time Integration Schemes

We obtain an initial equal arclength distribution of marker points on each �k by the
methods described in [14]. Briefly outlining this procedure, we start with an even number
of points, Nk on �k , given in some convenient parametrization. We assume that Nk is large
enough to fully resolve the interface (i.e., the Fourier spectrum has decayed to round-off).
The initialization procedure involves solves a sequence of nonlinear equations for the Nk

marker points at equal arclength intervals using Newton’s method and Fourier interpolation.
Once this is done, �k is represented by a spectral mesh with node points at uniformly spaced
intervals in α (hk = 2π/Nk is the mesh spacing).

As discussed briefly in the previous section and in more detail in [16], the stability
constraint on an explicit method is

�t = O

(
min
�k

Lk

Nk

)
. (17)

Even when regions of high curvature develop, the evolution of the interface is not stiff as
long as grid points are maintained at equispaced intervals. Based on our analysis in [16],
we choose the explicit midpoint Runge–Kutta method for the time integration of (5).

The right-hand side of the evolution equation (5) is calculated pseudospectrally: all
differentiation in α is done using the fast Fourier transform and the fluid velocity is ob-
tained through a spectrally accurate discretization (see Section 5.2). As discussed in de-
tail in [16], we see growth of modes near the Nyquist frequency, particularly if the ini-
tial profile is significantly deformed. In [16], we carefully considered stability issues that
might have been masked by filtering, and thus we removed this instability by padding
the Fourier spectrum. Based on our understanding developed from this previous work,
we are confident that using the less expensive procedure of filtering will not smooth out
any important effects. We use the filter from [14] which combines a 25th-order Fourier
filter

�̂[ f ](k) = e−10(|k|/N )25
f̂ (k)

with a Krasny filter, setting to zero all Fourier modes below a tolerance level ε = 10−13.
The Fourier spectrum is checked during the course of simulation and if the modes near

the Nyquist frequency rise above round off, Nk is doubled. Similary, if the modes at the
tail of the spectrum have decayed sufficiently, Nk is cut in half. The time step is adjusted
according to the stability constraint (17).
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5.2. Discretization of Integral Equation

In order to solve the Sherman–Lauricella equations, we use a Nyström discretization
based on the trapezoidal rule since it achieves super-algebraic convergence for smooth data
on smooth boundaries. For this, we let the position of each nodal point on �k be described
by τ k

j . Associated with each such point is an unknown value ωk
j . The derivative ∂τ k/∂α

is denoted by σ k and the derivative values σ k
j at the discretization points are obtained

pseudospectrally. The total number of points is

N =
M∑

k = k0

Nk,

where k0 = 0 for problems in bounded domains and k0 = 1 for problems in unbounded or
semi-infinite domains.

Before considering the discretization of (13) and (15), we define the discrete kernels of
the integral operators:

K1
(
τ k

j , τ
m
n

) = hm

2π i

(
σ m

n

τm
n − τ k

j

− σ m
n

τm
n − τ k

j

,

)

K2
(
τ k

j , τ
m
n

) = hm

2π i

(
σ m

n

τm
n − τ k

j

− σ m
n

(
τm

n − τ k
j

)
(
τm

n − τ k
j

)2

)
.

When τ k
j = τm

n , K1 and K2 should be replaced by the appropriate limits [10, 16]

K1
(
τ k

j , τ
k
j

) = hk

2π
κk

j

∣∣σ k
j

∣∣,
K2
(
τ k

j , τ
k
j

) = hk

2π
κk

j

(
σ k

j

)2∣∣σ k
j

∣∣ ,

where κk
j denotes the curvature at the point τ k

j and is calculated pseudospectrally.
Consider now the system (13). After discretization, we have

ωk
j +

M∑
m=0

Nm∑
n=1

K v
1

(
τ k

j , τ
m
n

)
ωm

n +
M∑

m=0

Nm∑
n=1

K v
2

(
τ k

j , τ
m
n

)
ωm

n = −1

2

σ k
j∣∣σ k
j

∣∣ , (18)

where

K v
1

(
τ k

j , τ
m
n

) = K1
(
τ k

j , τ
m
n

)+ hm

∣∣σ m
n

∣∣δkm + hmσ m
n

τm
n − zm

δmm

K v
2

(
τ k

j , τ
m
n

) = K2
(
τ k

j , τ
m
n

)− hmσ m
n

τm
n − zm

δmm .

In the preceding expressions, δkm is the usual Kronecker delta symbol, except that
δ00 ≡ 0.
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Remark. We have omitted the term B0 in Eq. (13) since its absence does not affect the
behavior of the iterative solution procedure we will employ. For a detailed discussion of
this point, see [7].

Consider now the system (15). After discretization, we have

ωk
j +

M∑
m=1

Nm∑
n=1

K b
1

(
τ k

j , τ
m
n

)
ωm

n +
M∑

m=1

Nm∑
n=1

K b
2

(
τ k

j , τ
m
n

)
ωm

n = f k
j , (19)

where

f k
j = −1

2

σ k
j∣∣σ k
j

∣∣ − φ∞
(
τ k

j

)+ τ k
j φ

′∞
(
τ k

j

)+ ψ∞
(
τ k

j

)+ iB
4

∫ jhk

0
ng τ̄ τα′ + ngττα′ dα′

−
M∑

m=1

{
2iCm arg

(
τ k

j − zm
)− Cm

τ k
j − zm

τ k
j − zm

}
.

The kernels K b
1 and K b

2 are given by

K b
1

(
τ k

j , τ
m
n

) = K1
(
τ k

j , τ
m
n

)+ hm

∣∣σ m
n

∣∣δkm + i

2π

hmσ m
n(

τm
n − zm

)2 δkmτ k
j

K b
2

(
τ k

j , τ
m
n

) = K2
(
τ k

j , τ
m
n

)+ i

2π

hmσ m
n(

τm
n − zm

)2 δkmτ k
j .

In our implementation, the matrix equations (18) and (19) are solved iteratively, using
the generalized minimum residual method GMRES [34]. As discussed in detail in [10, 16,
17], the bulk of the work at each iteration lies in applying the full matrix to a vector, i.e.,
computing the product represented by the left-hand side of (18) and (19). This product
can be computed in O(N ) time using the adaptive fast multipole method (FMM). The
implementation used here was developed in [10] for problems in Stokes flow with solid
boundaries and elasticity in the plane. For further details, we also refer the reader to the
original papers [4, 8, 33]. Since the number of iterations needed to solve a Fredholm equation
of the second kind to a fixed precision is bounded independent of the system size, we can
estimate the total cost of solving the stress problem by

c(ε) C(ε) N ,

where c(ε) is the number of GMRES iterations needed to reduce the residual error to ε and
C(ε) is the constant of proportionality in the FMM.

Once the solution ωk
j has been computed, we discretize (16) and calculate the velocity at

the grid points according to

uk
j + ivk

j = −hk

π
(ωα)k

j +
M∑

m=k0

Nm∑
n=1

K ′
1

(
τ k

j , τ
m
n

)
ωm

n + i
M∑

m=k0

Nm∑
n=1

K2
(
τ k

j , τ
m
n

)
ωm

n

+ (u∞ + iv∞)k
j + (uk

j + ivk
j

)s
, (20)

where (u∞ + iv∞)k
j is taken to be zero in the case k0 = 0; (uk

j + ivk
j )

s takes on the appro-
priate values according to the contributions from the singularities in �k ; and K2 is defined
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previously and K ′
1 is

K ′
1

(
τ k

j , τ
m
n

) = − hm

2π

(
σ m

n

τm
n − τ k

j

+ σ m
n

τm
n − τ k

j

)

K ′
1

(
τ k

j , τ
k
j

) = − hk

2π
Re

{
(σα)k

j

σ k
j

}
.

The quadrature rule in (20) is spectrally accurate and is based on subtracting off the sin-
gularity in the principal value integral in (16). Again, FMM is used to evaluate (20). We
note that in the primitive variable formulation, the integral equation is formulated in terms
of the velocity, and thus an extra evaluation is not required after the integral equation has
been solved. The cost of the extra calculation in (20) in our formulation is equivalent to one
extra GMRES iteration and thus is not significant.

6. NUMERICAL RESULTS

The algorithms described above have been implemented in Fortran. Here, we illustrate
their performance on a variety of examples. The convergence tolerance for the GMRES
iteration is set to 10−10 and all timings cited are for a Compaq Alpha ES40. As a general
check of the correctness of our integral equation methods, we calculated the velocities on
the interface according to (20) for several examples and used these as input for our integral
equation solvers developed in [10]. We confirmed that the solutions returned from these
solvers satisfied the boundary conditions given by (9) and (10).

EXAMPLE 1. The sintering of a circular disk with a circular hole. To test our numerical
methods, we first consider the evolution of a circular region filled with a viscous fluid and
containing a circular hole centered at the origin. An analytical solution for this problem is
given in [39], describing the shrinkage rate of the outer boundary and the inner hole. If ro

is the radius of the outer boundary, with ro(0) = Ro, and ri the radius of the inner, with
ri (0) = Ri , then the solution is described implicitly by

t = 2(Ri − ri ) +
√

3 + 4r2
i −

√
3 + 4R2

i ,
(21)

t = 2(ro − Ro) −
√

4r2
o − 3 +

√
4R2

o − 3.

The sintering process is shown in Fig. 2 for an example with an initial outer radius of Ro = 1
and inner radius of Ri = 1/2. Figure 3 shows the computed decay of the inner and outer
radius and a comparison to the analytical solution (21).

In the next example, the interior circle is offset so that it is situated near the outer
boundary. This example was considered in [30, 39] and it provides a useful comparison
of our numerical methods against low-order accurate schemes. (The methods in [39] use a
polygonal approximation to the interface and are constrained by the O(N 3) operation count.
Thus, they tend to be under resolved.) For the circular hole, we take a radius of 0.5 and
situate the center at y = 0.45 on the vertical axis, giving an initial separation of 0.05 from
the outer boundary. The initial time step is �t = 0.005 and the boundaries are discretized
with 512 points on each to ensure the solution is spectrally resolved during the first time
step. This number is adjusted during the course of the simulation to ensure full resolution.
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FIG. 2. The sintering of a circular disk with a circular hole at t = 0(0.1)0.7.

The total CPU time is 760 seconds and the initial and subsequent geometries are shown in
Fig. 4. A comparison with the numerical results of van de Vorst are shown in Fig. 5, and the
discrepancy between the two is significant. At t = 0.1, for example, the relative difference
is about 10%. The error in total area of the fluid domain reported in their simulation has a

FIG. 3. The left-hand plot shows the behavior of the inner (dashed line) and outer (solid line) radius. The
right-hand plot shows the error in the computed solution with �t = 0.01 and N = 64 on each boundary.
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FIG. 4. The shrinkage of a circular hole located close to the outer boundary. The first plot shows the evolving
geometry and the remaining plots show contours of vorticity at various times (equal contour levels are on all
plots—hence the void regions shown at t = 0.0 and 0.1).

FIG. 5. A comparison of the computed decay of the area of a hole located close to the outer boundary versus
the numerical results of van de Vorst [39].
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FIG. 6. The shrinkage of a rectangular region with 16 holes.

maximum value of 1%. In contrast, the error in area during our simulations remains below
0.0001%. The numerical methods presented in [30] are of higher order than those of [39],
and their results on this test problem are in higher visual agreement with ours.

In this last sintering example, we consider the more complex problem shown in Fig. 6.
The initial geometry is descretized with a total of 13,600 points (800 per hole). This number
increases during the simulation to a maximum of 53,600 and then drops to a final value of
5400 at t = 0.2. The total CPU for this example is 45 hours.

EXAMPLE 2. Buoyancy-driven interactions between bubbles. In this next example, we
consider the buoyancy-driven interaction between the 102 bubbles shown in Fig. 7, for
three different values of the bond number B = 0.1, 1.0, and 10.0. The bubbles are initially
discretized with Nk = 64, and this number increases as the bubble deforms. The simulations
for the three different values of Bond number are shown in Figs. 8–10. (Note that for
comparison purposes, the reported time has been scaled by the Bond number, t/B.) We can
see in these simulations that the bubbles tend to move from regions of low concentration
to regions of high concentration. This phenonemon was discussed in detail in [22]. A
comparison of the three simulations at the final time is shown in Fig. 11. This final shows
the greater deformation of bubbles with higher values of the Bond number. It also shows
the increased mobility as a result of greater bubble deformations.
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FIG. 7. The initial configuration of 102 air bubbles.

FIG. 8. Deformation withB= 0.1, in presence of a wall at y = 0. The CPU time required for this simulation was
1.2 hours, error (A) = 1.5035 × 10−7, error (sα) = 2.9003 × 10−6. �t0 = 0.01, �t f = 5.0237 × 10−2, max Nk =
128 and N f = 7616.
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FIG. 9. Deformation with B = 1.0, in presence of a wall at y = 0. The CPU time required for this simula-
tion was 8.1 hours, error (A) = 2.4617 × 10−9, error (sα) = 4.0836 × 10−7. �t0 = 0.01, �t f = 7.2647 × 10−4

max Nk = 1024 and N f = 28352.

FIG. 10. Deformation withB = 10.0, in presence of a wall at y = 0. The CPU time required for this simulation
was 5 days, error (A) = 4.1311 × 10−10, error (sα) = 6.2238 × 10−7. �t0 = 0.01, max Nk = 4096, N f = 70272.
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FIG. 11. A close up of three simulations at final time. The bubbles given by the solid contours have B = 10,
the dashed contours have B = 1, and the dotted contours have B = 0.1.

EXAMPLE 3. Polydispersed suspension of bubbles in an extensional flow. In this final
example, we consider the deformation of a large number of bubbles (181) in an extensional
flow,

u∞ = Cx, v∞ = −Cy.

C is the dimensionless capillary number defined by

C = γµa

σ
,

FIG. 12. Initial distribution of 181 bubbles in an extensional flow. The initial discretization places 128 points
on the large bubbles, 64 on the small.
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FIG. 13. Deformation of bubbles in an extensional flow with C = 0.15. The CPU time required for this
simulation was 3 days, 10 hours, error (A) = 2.1479 × 10−7, error (sα) = 4.6387 × 10−6. �t0 = 0.025, �t f =
0.00297, max Nk = 512, N f = 40064.

where γ is the characteristic strain rate of the extensional flow. The initial distribution of
bubbles is shown in Fig. 12 and snapshots of the evolution are shown in Fig. 13. The total
CPU time for this simulation was 3 days and 10 hours, with the great majority of time
being spent computing the solution between t = 5 and the final time, t = 7 (63.2 hours).
As the bubbles get closer together (see Fig. 14), the number of iterations required to solve

FIG. 14. A close up at t = 7.0.
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matrix equations goes up significantly (from 24 iterations initially to at least 100 near the
final time). It is expected that this expense can be alleviated by employing preconditioners
and/or alternative quadratures. This will be investigated further.

7. CONCLUSIONS

In this paper, we extend the integral equation methods developed in [16] for a single,
closed interface to those that are capable of handling multiple interfaces. These methods
are efficient and highly accurate and should be attractive for studying large-scale problems
in which a high degree of precision is needed to capture the precise nature of bubble
interactions. We demonstrate the accuracy and efficiency of our methods using several
examples, many involving O(100) interfaces. In the future, these integral equation methods
could be embedded in a periodic solver of the kind discussed in [9], in order to accurately
study the rheological properties of suspensions and emulsions, for example.

Our methods incorporate several new ideas. The first involves “completing” the rank-
deficiency of the integral operator in multiply-connected domains in the context of the
complex-variable formulation. This was discussed for two separate cases: bubble dynamics
and viscous sintering. In addition, the interfaces are described using a spectral mesh, and
the velocity at the marker points is calculated pseudo-spectrally from the solution to the
integral equations. The solution to the integral equation relies on a fast multipole-based
iterative procedure which requires only O(N ) operations, where N is the total number of
marker points. A final key feature in our methods is that evolution equations that preserve
equal arclength spacing of the marker points are used, which results in a low-order stability
constraint.
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